
Implementing
lore.kernel.org interface

GSoC 2023 Contributor Application

David de Barros Tadokoro
University of São Paulo

email: davidbtadokoro@gmail.com
GitHub: https://github.com/davidbtadokoro

mailto:davidbtadokoro@gmail.com
https://github.com/davidbtadokoro


About me

My name is David Tadokoro, and I'm a Computer Science student from Brazil. I'm
really interested in all things related to computers. Still, in the last year or so, I became
fascinated with two topics: Operating Systems and Open Source communities.

Lately, my main programming languages are Bash, Java, and Python, but I'm trying
to enhance my C knowledge.

I am a member of the FLOSS Competence Center at the University of São Paulo
(CCSL-USP). There, I can access some machines to make any development or test for the
kworkflow project.

Why I chose kworkflow?

Nowadays, the Linux kernel is a ubiquitous and critical piece of software for the
modern world, as it has been for years. Kernel development has a giant impact on the
technology industry as a whole. The kw project aims to provide tools for everyday tasks and
be a unified environment for kernel developers.

Since I became involved in the kw project, I learned a lot about working with a
community (which I find the most invaluable), the Linux kernel, bash, git, and the kw project.

Prerequisites

As a well-thought exercise to warm-up applicants, we needed to complete tasks
related to the problems the kw project aims to solve, how it solves some of them, and ways
developers can contribute to solving more of them.

I first had to compile and install a simple modified version of the Linux kernel using
virtual machines (in this case, a Debian system). This step is one of the core problems that
kw solves and is always fun. The following steps lay the foundation for contributing to the
project, like reading the bash manual, learning good practices, and understanding the coding
style. All of those are fundamental and should always be referred to while contributing.



Figure 1: Proof of the warm-up exercise

Above is the screenshot of the Debian QEMU virtual machine with a Linux kernel
version 6.0.0 modified, compiled, and installed for the exercise. The modification was to
change the kernel's name to 6.0.0-Tadokoro-31054bf (the number suffix was the ID given to
me by my project's mentor).

Contributions to kworkflow

Contribution Status

tests: report_test: Fix terminal and file outputs from
test_save_data_to()

Accepted

documentation: man: kw: Revise deploy subsection Accepted

src: kw_remote: Fix not failing when missing valid options Accepted

src: kw_remote: Fix remove remote that is prefix of other remote Accepted

documentation: man: remote: Add --set-default option to kw remote
man

Accepted

documentation: man: remote: Revise kw remote man page Accepted

src: deploy: Fix individual redirects to same file Accepted

src: deploy: Fix unreachable command Accepted

tests: deploy_test: Fix incorrect ShellCheck fail Accepted

https://github.com/kworkflow/kworkflow/commit/41341d977534414f947e7f441e56bd85ce0ce9f3
https://github.com/kworkflow/kworkflow/commit/41341d977534414f947e7f441e56bd85ce0ce9f3
https://github.com/kworkflow/kworkflow/commit/8c8d666a424062ea9741b1a54863893cd5dfbab4
https://github.com/kworkflow/kworkflow/commit/1dc8144ae3dad5d1777115783f3112cad4d91286
https://github.com/kworkflow/kworkflow/commit/52c456946d0a1c1a26ff83281ab5237cccc5074e
https://github.com/kworkflow/kworkflow/commit/dbb8c00be44f77135ca8a6301324513f55e6cc6d
https://github.com/kworkflow/kworkflow/commit/dbb8c00be44f77135ca8a6301324513f55e6cc6d
https://github.com/kworkflow/kworkflow/commit/73cbe5222319144f288102c4c36b8e7d2cc1cc36
https://github.com/kworkflow/kworkflow/commit/42a46d44a33bf230a06dc95b028c8e15d378025a
https://github.com/kworkflow/kworkflow/commit/fc548db5942f94a8116a6ba2e610c6ccb3dba993
https://github.com/kworkflow/kworkflow/commit/278cd13ced8119cb5d188d1cb9415dfae9c313c8


Contribution Status

src: deploy: Implement deploy commands outside kernel tree Accepted

src: _kw: Add ZSH completion for kw (series of 28 commits) Accepted

documentation: content: project_structure: Add Bash and Zsh
completions instructions

Accepted

documentation: dependencies: Add curl and xpath dependencies Accepted

src: upstream_patches_ui: Add help option Accepted

src: upstream_patches_ui: Fix list_patches menu title Accepted

src: upstream_patches_ui: Fix Dashboard screen message box Accepted

src: upstream_patches_ui: Add loading screen for delayed actions Accepted

tests: kwlib_test: Suppress wrong ShellCheck fail Accepted

src: kwib: Add function for safety checking paths Accepted

src: upstream_patches_ui: Add bookmark feature Accepted

src: upstream_patches_ui: Add message box screen Accepted

src: lib: dialog_ui: Add persistence to checklist options Accepted

src: upstream_patches_ui: Add apply patch action Work in Progress

Contributions to the Linux kernel (AMD repository)

To better understand the workflow of Linux kernel developers, I submitted three
patches to the AMD repository.

Contributions Status

drm/amd/display: add prefix to amdgpu_dm_plane.h functions Accepted

drm/amd/display: remove legacy fields of dc_plane_cap struct Accepted

drm/amd/display: add prefix to amdgpu_dm_crtc.h functions Accepted
Link to the kernel source tree: https://gitlab.freedesktop.org/agd5f/linux

https://github.com/kworkflow/kworkflow/commit/6e4486a85e6fd4fbd4f2934f259e7cd7c860cc0b
https://github.com/kworkflow/kworkflow/commit/b3aea82b67089d395ab735d417a7586daddf5ebb
https://github.com/kworkflow/kworkflow/commit/2f95ec9b76691d3e37ee04f4c133ab7c4646168a
https://github.com/kworkflow/kworkflow/commit/2f95ec9b76691d3e37ee04f4c133ab7c4646168a
https://github.com/kworkflow/kworkflow/commit/49cd58fb9d9d5e4bfa03f65119f16af614975313
https://github.com/kworkflow/kworkflow/commit/65ed4a4e332d597180f46f6a4919183166910604
https://github.com/kworkflow/kworkflow/commit/1a316d4fcba7921dad8038a05c078ceda425e97a
https://github.com/kworkflow/kworkflow/commit/dbf94972bb8e7cd86425dee4cdc60295888b7ef9
https://github.com/kworkflow/kworkflow/commit/79a05c239d1dbcd9a25f48ca5d7a922c1b6a9521
https://github.com/kworkflow/kworkflow/commit/d7971078d398c60b71fa67b29ef1e19983517b12
https://github.com/kworkflow/kworkflow/commit/321b79b29c0495d14333e0f743dba00553ed3ae6
https://github.com/kworkflow/kworkflow/commit/196d9e0dcd07eece030c5a44c8313f3544f41fb8
https://github.com/kworkflow/kworkflow/commit/fc558ca357235e21673b412541e6daf865cc0cf5
https://github.com/kworkflow/kworkflow/commit/485d0bca2abea3a922c381b46d395fe17bb58f81
https://github.com/kworkflow/kworkflow/pull/823
https://lore.kernel.org/amd-gfx/20230306022427.437022-1-davidbtadokoro@gmail.com/
https://lore.kernel.org/amd-gfx/20230307225341.246596-1-davidbtadokoro@usp.br/
https://lore.kernel.org/amd-gfx/20230307191417.150823-1-davidbtadokoro@usp.br/
https://gitlab.freedesktop.org/agd5f/linux


Project Proposal

The Linux kernel is collaboratively developed using mailing lists. Currently, kw
already has a rich feature to aid in formatting and sending patches through email, but only a
prototype for dealing with the recipient side of the patches. Actions like consulting the
mailing lists, reviewing/replying patches, applying them, and building and deploying the
kernel patch version are recurrent tasks for maintainers/contributors and anyone involved in
the Linux kernel community.

With this in mind, my GSoC proposal aims to refine and expand kw
upstream-patches-ui, which is the feature responsible for providing an interface with
the lore archives of the mailing lists related to the Linux kernel (lore.kernel.org) and tools for
dealing with the tasks listed above. In particular, I aim to allow users to use the feature in
their patch review routine, letting them do inline reviews, reply with Reviewed-by, and much
more. Also, the current user interface used for the feature is dialog, and I would like to at
least experiment with using other interfaces like a web interface.

kw upstream-patches-ui starting point:
Below are screenshots of the starting point of the feature (before my contributions)

and some interesting changes that can be done.

Figure 2 - Dashboard (main screen) of the feature

As we can see, it lacks some important menus, like one to manage the registered
mailing lists (only when first launching the feature can the user register/unregister lists) and
another to configure the feature settings (preferred dialog theme, default local kernel source
tree, etc.). Also, we can see that the message box (upper section of the screenshot) is not
related to this screen.

https://lore.kernel.org/


Figure 3 - Bookmarked Patches screen

The screenshot represents a desirable look and feel of the Bookmarked Patches
screen. However, the patches displayed are hardcoded because the bookmarking of patches
is not implemented.

Figure 4 - Patch (series) details and actions screen

There are many actions that we can add here. Aside from implementing the
bookmark action, we could add 'Apply', 'Build', 'Deploy', 'Reply with Reviewed-by', 'Reply
with Tested-by', 'View', and more. We could also refine the 'Download' action to let the user
choose where to save the patch (series) and implement a way to schedule actions.



kw upstream-patches-ui interface mockup:
Below are some mockups of the main screens related to the feature.

- Main screen of the feature (Dashboard):

Figure 5 - Dashboard screen mockup

The Dashboard (Figure 5) is the first screen shown, besides when first launching the
feature. Here the user will have access to the main menus:

1. Registered Mailing Lists: this screen is basically implemented and represents
the menu to access the public mailing lists registered by the user.

2. Manage Mailing Lists: screen to register/unregister mailing lists. The screen
itself is already implemented, however, there is no menu to access it from the
Dashboard at the moment.

3. Bookmarked Patches: screen to view patches (series) marked previously by
the user. For the same patch (series), the user will have almost the same
view as if it was accessed through the 'Registered Mailing Lists' menu.

4. Scheduled Actions: screen with a list of patches (series) with actions
scheduled to be executed in batch. Schedulable actions can be those that the
user may want to run afterward that (potentially) can take some time, like
applying a series of patches, building the series version of the kernel,
deploying the series version of the kernel, etc.

5. Settings: screen to change configurations through the feature itself.



- Registered Mailing Lists Sequence:

Figure 6 - Registered Mailing Lists screen mockup

Figure 7 - Patches from given mailing list screen mockup



Figure 8 - Series informations and actions screen mockup

A screen with the registered mailing lists will be displayed when selecting the
Dashboard menu 'Registered Mailing Lists' (Figure 6). After the user chooses a mailing list,
the series of the list will be displayed from the latest to the oldest (Figure 7). As the volume
of series from a list can be enormous, the series will be displayed on pages, and the buttons
<PREVIOUS> and <NEXT> can be used to navigate through them. By choosing a given
series with the <SHOW> button, the user can consult general information on the top of the
screen (series title, author, etc.), check the status of some actions (if they ran and if they
were successful or not) and select actions to run. Note that there are two types of actions:
ones that can't be run later (Non-schedulable) and those that can (Schedulable) (Figure 8).
If the user chooses to run some actions later by hitting <RUN LATER>, those will be
displayed in the 'Scheduled Actions' menu. Hitting <RUN LATER> with actions checked that
are Non-schedulable will have the same effect as hitting <RUN NOW> for those.



- Manage Mailing Lists Sequence

Figure 9 - Manage Mailing Lists screen mockup

By selecting the Dashboard menu 'Manage Mailing Lists' the screen to
register/unregister mailing lists will be displayed (Figure 9). Important to note that the screen
itself is already implemented.

- Bookmarked Patches Sequence

Figure 10 - Bookmarked Patches screen mockup



Figure 11 - Bookmarked Series information and actions screen mockup

When accessing the Dashboard menu 'Bookmarked Patches', a screen with the list
of the bookmarked series, from latest to oldest bookmark, will be displayed (Figure 10). By
selecting a given series, a screen with its information and actions will be displayed (Figure
11). This screen is almost identical to the one displayed when selecting a series directly from
a given mailing list (Figure 8), with the difference that it has an option 'Unbookmark' that
removes the series from the bookmarks after it is run.

- Scheduled Actions Sequence

Figure 12 - Scheduled Actions screen mockup



By choosing the Dashboard menu 'Scheduled Actions', a screen with the list of series
with actions that were scheduled from the 'Series Infos and Actions' (Figure 8) and
'Bookmarked Series Infos and Actions' (Figure 11), from the latest to oldest scheduled, will
be displayed (Figure 12). By hitting <START>, the actions from the selected series will
begin to run.

- Settings Sequence

Figure 13 - Settings screen mockup

When selecting the Dashboard menu 'Settings', a screen with all the configurations
that can be set through upstream-patches-ui will be displayed (Figure 13). By hitting
<CHANGE> with a given configuration selected, the user can edit the given configuration; and
by hitting <APPLY>, the changes will be applied.



- Notes

Figure 14 - Loading Screen Notification mockup

Selecting some menus (like selecting a given mailing list) and actions (like saving or
building a series) will trigger a loading screen notification just to inform the user that there
may be a delay between the request and the completion (Figure 14).

Wherever there is an <EXIT> button, hitting it will exit upstream-patches-ui and
return to the shell. Also, wherever there is a <RETURN> button, hitting it will return to the
previous screen. In the case of the <PREVIOUS> and <NEXT> buttons, hitting <PREVIOUS>
on the first page will have the same effect as the <RETURN> button.

Deliverables

● kw upstream-patches-ui:
1. Implement an interface that is user-friendly, simple, and without major bugs.
2. Make the feature capable of downloading, building, and deploying patches

and displaying the status of those actions to the user.
3. Allow users to reply to the patches in the public mailing lists with

Reviewed-by, Tested-by, and inline reviews.
● kw mail:

1. Update feature codestyle.
2. Fix known bugs.
3. Improve feature where possible.



Proposal Timeline

Period of May 4 - May 28, 2023: Community Bonding
Week 1: May 4 - May 7

● Integrate kw build with upstream-patches-ui
● Add basic documentation for upstream-patches-ui
● Add Bash and Zsh completions for upstream-patches-ui

Week 2: May 8 - May 14
● Integrate kw deploy with upstream-patches-ui
● Get used to kw mail codebase

Week 3: May 15 - May 21
● Add 'Settings' menu to Dashboard screen
● Add upstream-patches-ui short option
● Map codestyling improvements to kw mail

Week 4: May 22 - May 28
● Add 'Manage Mailing Lists' menu to Dashboard screen
● upstream-patches-ui can't download patches with apostrophe in title
● Fix/update kw mail codestyle

Period of May 29 - July 9, 2023: Coding Phase 1
Weeks 5, 6, 7, 8 and 9: May 29 - July 2

● Refine the 'Download' action on kw upstream-patches-ui
● Make upstream-patches-ui query X patches
● Enable query for specific string from lore
● Add the possibility of reply a patch with Reviewed/Tested-by
● Add possibility of viewing patch changes through upstream-patches-ui
● Add inline review of patches
● Fix some bugs and make some enhancements to kw mail

Week 10: July 3 - July 9
● Refine a prototype of the feature that can be used for a full patch review routine

Period of July 10 - July 14, 2023: Midterm Evaluation
Midterm Evaluation week: July 10 - July 14

● Finalize and submit midterm evaluation

Period of July 10 - August 27, 2023: Coding Phase 2
Weeks 11, 12, 13 and 14: July 17 - August 6

● Refine upstream-patches-ui local database
● Revise kw mail documentation
● Experiment with other views for kw upstream-patches-ui besides dialog

https://github.com/kworkflow/kworkflow/issues/801
https://github.com/kworkflow/kworkflow/issues/830
https://github.com/kworkflow/kworkflow/issues/802
https://github.com/kworkflow/kworkflow/issues/829
https://github.com/kworkflow/kworkflow/issues/827
https://github.com/kworkflow/kworkflow/issues/811
https://github.com/kworkflow/kworkflow/issues/809
https://github.com/kworkflow/kworkflow/issues/815
https://github.com/kworkflow/kworkflow/issues/799
https://github.com/kworkflow/kworkflow/issues/800
https://github.com/kworkflow/kworkflow/issues/803
https://github.com/kworkflow/kworkflow/issues/831
https://github.com/kworkflow/kworkflow/issues/828
https://github.com/kworkflow/kworkflow/issues/819


Weeks 15, 16 and 17: August 7 - August 27
● Validate features and User Experience
● Make refinements and features improvements

Period of August 28 - September 4, 2023: Final Evaluation
Final Evaluation week: August 28 - September 4

● Mentors submit final GSoC contributors evaluations


